The pipe_cat()
function allows messages to be output to
the console or to an external file without the need to break out
of a pipeline to do so.
pipe_cat( data, ..., file = "", sep = " ", fill = FALSE, labels = NULL, append = FALSE )
data | the data being passed through the pipeline |
---|---|
... | arguments to be passed to the |
file, sep, fill, labels, append | See the |
sample(100, 1) %>% runif() %>% pipe_cat("Current length: ", length(.), "\n") %>% pipe_cat("Current average: ", mean(.), "\n") %>% pipe_cat("Current standard error: ", sd(.) / length(.), "\n") %>% pipe_cat("Returning mean:\n") %>% mean()#> Current length: 87 #> Current average: 0.4873048 #> Current standard error: 0.003279136 #> Returning mean:#> [1] 0.4873048tibble::tibble( x = runif(10), y = runif(10) ) %>% pipe_cat("Average x: ", mean(x), "\n") %>% pipe_cat("Current number of rows: ", nrow, "\n") %>% dplyr::mutate(z = x + y)#> Average x: 0.4680811 #> Current number of rows: 10#> # A tibble: 10 x 3 #> x y z #> <dbl> <dbl> <dbl> #> 1 0.927 0.928 1.86 #> 2 0.894 0.0266 0.921 #> 3 0.204 0.559 0.763 #> 4 0.257 0.854 1.11 #> 5 0.614 0.0759 0.690 #> 6 0.441 0.206 0.647 #> 7 0.316 0.496 0.811 #> 8 0.101 0.262 0.363 #> 9 0.273 0.416 0.689 #> 10 0.654 0.439 1.09palmerpenguins::penguins %>% dplyr::mutate(species = as.character(species)) %>% dplyr::filter(!is.na(bill_length_mm)) %>% pipe_cat("Total average Culmen Length: ", mean(bill_length_mm), "\n") %>% dplyr::group_by(species) %>% pipe_cat(species, " average Culmen Length: ", mean(bill_length_mm), "\n")#> Total average Culmen Length: 43.92193 #> Adelie average Culmen Length: 38.79139 #> Chinstrap average Culmen Length: 48.83382 #> Gentoo average Culmen Length: 47.50488#> # A tibble: 342 x 8 #> # Groups: species [3] #> species island bill_length_mm bill_depth_mm flipper_length_… body_mass_g #> <chr> <fct> <dbl> <dbl> <int> <int> #> 1 Adelie Torge… 39.1 18.7 181 3750 #> 2 Adelie Torge… 39.5 17.4 186 3800 #> 3 Adelie Torge… 40.3 18 195 3250 #> 4 Adelie Torge… 36.7 19.3 193 3450 #> 5 Adelie Torge… 39.3 20.6 190 3650 #> 6 Adelie Torge… 38.9 17.8 181 3625 #> 7 Adelie Torge… 39.2 19.6 195 4675 #> 8 Adelie Torge… 34.1 18.1 193 3475 #> 9 Adelie Torge… 42 20.2 190 4250 #> 10 Adelie Torge… 37.8 17.1 186 3300 #> # … with 332 more rows, and 2 more variables: sex <fct>, year <int>